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Abstract. This article proposes an integrated approach
combining a novel population-based jellyfish search al-
gorithm (JSA) and loss sensitivity factor (LSF) to
optimize single and multiple distributed generation
(DG) placement and ratings for total active power
loss (TAPL) minimization and total voltage deviation
(TVD) reduction. The study considers photovoltaic
(PV) and wind turbine (WT) DG systems for optimal
integration. The simulation findings are examined for
a single and multiple DG allocation on the IEEE 69-bus
benchmark radial distribution power network (RDPN).
The TAPL of the 69-bus benchmark RDPN is mini-
mized from 225 kW to 77.10 kW, 62.32 kW, 19.52 kW,
and 9.94 kW after the single PV, three PV, single WT,
and three WT DG systems optimization, respectively.
Simultaneously, the TVD is minimized from 1.8369 per
unit (p.u.) to 0.7036 p.u. and 0.6698 p.u. for a single
and three PV DG systems optimization, respectively,
and 0.3934 p.u. and 0.3466 p.u. for a single and three
WT DG systems placement, respectively. The perfor-
mance of the proposed integrated approach is compared

to the different optimization techniques, taking TAPL
as a comparison metric. The comparison showcases
that the integrated approach results in a favorable op-
timal solution among the compared optimization tech-
niques.

Keywords

Distributed generation, power loss, voltage de-
viation, optimization.

1. Introduction

The generating capacities of power stations around the
globe are increasing at a rapid rate to satisfy the in-
creased power demand. The utilities may expand their
existing power generation capacities to meet this rise
in power demand. However, the expansion of trans-
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mission and distribution networks is difficult due to
the isolated positioning of the power generation sta-
tion. Additionally, power transmission over a long dis-
tance results in more power losses and voltage drops.
Therefore, an alternative power generation approach
is needed to cut these technical difficulties. The power
generation near a load centre could be the wise solution
to this problem. Such a power generation technique
is termed distribution generation (DG). DG resources
can supply required active and reactive power locally
without expanding the existing system. DG uses dif-
ferent types of resources for power generation. How-
ever, the concern over limited fossil fuel reserves and
environmental considerations has led developing coun-
tries to move forward with renewable energy-assisted
DG. The renewable energy source-based DG inclusion
offers power loss minimization, voltage profile and sta-
bility improvement, suspended transmission and dis-
tribution line extension, and reliability improvement.
However, the impact of DG placement in distribution
power network (DPN) parameters such as bus voltage,
power flow, power losses, and voltage stability has to
be explored before and after the allocations. There-
fore, an appropriate technique is required for optimal
planning of DG into the RDPN to acquire constructive
benefits, since inappropriate allocation of DG increases
power losses and weakens the reliability and stability
of the radial distribution power network (RDPN).

DG placement and sizing problems in RDPN can be
solved for single- and multi-objective scenarios. The
optimal solution for the DG placement problem was
obtained using various conventional and heuristic tech-
niques. The analytical technique incorporates mathe-
matical computation to address the optimization prob-
lem [1]. The heuristic technique uses randomness to
solve optimization challenges. However, the latter
technique has produced better results than the former.
Moreover, analytical techniques require more time to
converge due to the numerous mathematical computa-
tions [2]. An efficient optimization technique should
possess faster convergence characteristics and be able
to find the best optimal solution, irrespective of the
complexity and size of the problem. Heuristic opti-
mization algorithms leverage randomness as an advan-
tage to find the optimal solution rapidly. Over the
years, researchers have applied several meta-heuristic
algorithms to optimize compensation devices, such as
DG, shunt capacitors, and STATCOM, to enhance the
performance of RDPN.

A shark optimization algorithm (SOA)-based tech-
nique was proposed to optimize DG’s location and rat-
ings to minimize the power losses (PL), improve the
voltage profile (VP), and enhance the voltage stability
(VS) of RDPN [3]. An integrated optimization tech-
nique was proposed using LSF and SA to optimize
DG systems (PV and WT) in IEEE 33-bus and 69-

bus benchmark RDPNs for minimizing PL and volt-
age deviation (VD) [4]. Optimal positions and ratings
for various DGs were optimized via an improved ver-
sion of the symbiotic organisms search (SOS) algorithm
to minimize PL, enhance VP, and improve VS in 33-
bus, 69-bus, and 118-bus RDPNs [5]. Multiple DGs
were optimally assimilated in IEEE 33-bus and 69-bus
benchmark RDPNs using the chaotic sine cosine algo-
rithm (CSCA) for single and multiple objectives [?].
An integrated technique using GWO and PSO algo-
rithms [7] was implemented to identify the suitable
locations and ratings of various DG types in 33-bus
and 69-bus RDPN. An artificial ecosystem-based op-
timization approach was implemented to optimize PV
and WT DG systems in 33-bus RDPN. The suggested
approach makes use of the LSF to find the optimal
location for DG placement [8]. A combined optimiza-
tion technique using genetic algorithm GA and parti-
cle swarm optimization (PSO) was introduced to opti-
mize the DG units into the 33-bus and 69-bus balanced
RDPNs [9]. DGs were optimized for PL reduction, VP
and VSI improvement. GA [10] and PSO [11] tech-
niques were applied to find the optimal position and
capacity of multiple DGs in RDPNs. An ant colony
optimization (ACO)-based approach was proposed for
locating the optimal location and size of a DG system
to minimize the TAPL of RPDN [12]. The appropriate
sites and sizes for a DG system were finalized with the
application of an integrated harmony search (HS) algo-
rithm and LSF technique [13]. The optimal sites were
identified using the LSF, and then the optimal sizes
were computed with the execution of the HS algorithm.
Authors have utilized Tabu search (TS) [14] and the
Big Bang Big Crunch algorithm (BB-BCA) [15] to op-
timize DG placement and size for TAPL minimization
and VP enhancement. A hybrid technique was pro-
posed using ABC and ACO to figure out the optimal
locations and capacities of DG systems for minimizing
operating cost, APL, and emission rate [16]. Likewise,
the whale optimization algorithm (WOA) [17], manta
ray foraging optimization (MRFO) algorithm [18], salp
swarm algorithm (SSA) [19], adaptive particle swarm
optimization (APSO) [20], grey wolf algorithm (GWA)
[21], ALO algorithm [22,23], Harris hawk optimization
(HHO) [24], and hybrid optimization [25] approaches
were proposed to optimize different types of DGs to en-
hance the performance of RDPN. A hybrid technique
using teaching-learning and PSO algorithms was ad-
dressed in [26] to optimize DGs and STATCOMs si-
multaneously in RDPNs. The rider optimization al-
gorithm (ROA) meta-heuristic technique was imple-
mented to optimize the position and size of different
DG units in RDPNs [27]. Authors have presented an
optimization teaching adopting teaching learning strat-
egy to optimize DG units in the RDPNs for minimizing
PL, enhancing VP and energy savings [28]. A stochas-
tic mixed-integer linear mathematical model was pre-
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sented in [29] for optimizing the placement and rating
of DG in the DC DPN. The proposed method solves the
DG allocation problem, addressing load demand un-
certainty and renewable energy source intermittency.
Optimal position and capacity of DG units were de-
termined for enhancing the VP and reducing the PL
of RDPN [30]. Various loading conditions were con-
sidered for different types of DG placement. Gener-
alized PSO methodology was proposed [31] for max-
imizing the profit of the DPN, taking the impact of
harmonics. An integrated analytical and grid search
algorithm (GSA) technique was proposed for solving
the optimal DG allocation problem [32]. The proposed
study considers PL reduction, VP improvement, and
voltage stability index (VSI) enhancement as the pri-
mary goals. A novel multi-objective GWO optimiza-
tion approach was introduced [33] to optimally assim-
ilate multiple units of DGs in the RDPN. PL mini-
mization, VD reduction, and VSI enhancement were
considered as the primary objectives in this DG op-
timization study. The appropriate location and size
of the PV DG unit were optimized using a new ap-
proach [34]. The proposed approach integrates LSF
and the bat algorithm to locate the best site and size
for the PV DG unit. A non-dominated sorting GA-II
optimization technique [35] was employed to optimize
the DG and capacitor units. The suggested technique
achieved technical performance in the form of PL re-
duction, VD minimization, and line loading maximiza-
tion. An enhanced SSA algorithm-assisted optimiza-
tion approach was presented in [36] to discover the
best solution for the DG placement and sizing prob-
lem in RDPN. The suggested approach optimizes the
DG units for maximizing the economic and technical
benefits, including PL minimization, VP improvement,
and cost minimization.

The meta-heuristic techniques presented in the liter-
ature have somehow been able to enhance the perfor-
mance of RDPN by optimizing the DG location and
ratings appropriately. However, most of the meta-
heuristic approaches are frequently trapped in local
optimal solutions and converge prematurely due to un-
balanced exploitation and exploration. Hence, the in-
troduction of new optimization techniques or modifi-
cations/hybridization of existing approaches is essen-
tial to improve the accuracy of optimal solutions. The
present study proposes an efficient integrated approach
using LSF and the jellyfish search algorithm (JSA) to
solve a single and multiple DG optimization problems.
JSA is a population-based algorithm that possesses
balanced exploitation and exploration features. This
feature makes a valuable reason for its selection in the
DG optimization problem. Moreover, to the extended
knowledge of the authors, the proposed integrated ap-
proach is validated for the first time in the present
study for a DG allocation problem.

The significant contribution of the present work is
outlined below.

• Implement a novel integrated LSF-JSA optimiza-
tion technique to assimilate PV and WT DG sys-
tems optimally into the RDPN for enhancing the
technical performance.

• Investigate the versatility of the proposed LSF-
JSA methodology for single and multiple numbers
of DG unit optimizations in the 69-bus RDPN.

• Assess the efficacy of the simulation findings of the
proposed integrated approach through a compre-
hensive comparison.

The contribution of the present work is elaborated in
different sections. Section 2 presents the problem for-
mulation for a single and multi-DG system placement.
Section 3 describes the mathematical modelling of the
LSF-JSA integrated approach. Section 4 presents the
simulation findings for the IEEE 69-bus benchmark
RDPN. A summary of the simulation findings is pre-
sented as a conclusion in Section 5.

2. Problem Formulation

The identification of critical bus and selection of rat-
ing for DG unit is a complex and non-linear problem.
In the present study, DG’s locations and ratings are
optimized aiming to minimize TAPL and TVD.

2.1. Problem Formulation

Consider an ‘n’ bus RDPN as shown in Fig. 1.

The flow of current (I) in a distribution line ‘k’ causes
APL and reactive power losses (RPL). However, APL
is more than the RPL in RDPN due to high line resis-
tance (Rk). Hence, large the RDPN more will be the
power losses. Also, it is crucial to minimize the TAPL
for an efficient power transmission network.

Equation (1) gives the mathematical expression for
TAPL of RDPN [37].

TAPL =

Nk∑
k=1

(
3× I2k ×Rk

)
(1)

where Nk is the number of branches in RDPN.

VP improvement is the secondary objective and is
accomplished via minimizing the TVD of an RDPN.
Equation (2) gives the objective function for TVD min-
imization [38]. The voltage deviation measurement be-
tween the actual (Vi) and nominal (1 p.u.) bus voltages
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Fig. 1: RDPN with DG placement.

gives the voltage stability state of the system.

TV D =

n∑
i=1

|1− Vi| (2)

where n is the number of buses of RDPN. Vi is the
voltage magnitude.

The present study uses the weighted sum method
(WSM) to define the above two objectives as a sin-
gle objective function [34].WSM assign an appropriate
weights to individual objectives as per the level of im-
portance. Equation (3) gives the objective function for
the DG optimization study expressing the TAPL and
TVD.

MOF = Minimize (δ1 ∗ TAPL+ δ2 ∗ TV D)
(3)

where δ1 and δ2 are the appropriate weightage factors
of TAPL and TVD, respectively. δ1 and δ2 values are
chosen based on the level of significance.

2.2. Constraints

The optimal solution to a multi-objective DG allo-
cation problem must fulfill several operational con-
straints, viz., real and reactive power balance con-
straints (equality) and RMS bus voltage, thermal ca-
pacity, and DG capacity (inequality constraints).

1) Power Balance

The net power injection in RDPN, including DG rat-
ing, must satisfy the expression presented in Eq. (4).

PS +

NDG∑
i=1

PDG(i) = TAPL+

n∑
j=1

P (j) (4)

where ‘Ps’ is the substation active power (AP) capacity.
‘PDG’ is the injected AP capacity of DG unit; ‘P ’ is
the AP demand; ‘NDG’ is the number of DG units.

2) Bus Voltage

The voltage magnitude of individual buses must be
kept inside the recommended minimum and maximum
values as expressed in Eq. (5) for security and safety
reason in the RDPN.

Vmin ≤ Vi ≤ Vmax (5)

where ‘Vmin’ and ‘Vmax’ are the minimum and maxi-
mum recommended levels of bus voltage, respectively.
The voltage variation of ±5% is considered nominal in
RDPN.

0.95p.u. ≤ Vi ≤ 1.05p.u (6)

3) Thermal Capacity

The optimized solution must ensure that the branch
current does not increase beyond the maximum current
capacity limit of a feeder line.

|Ik| ≤ |Ik,max| (7)

4) DG Rating

The DG sizes are optimally planned into the RDPN
obeying the constraints expressed in Eq. (8)-(10) to
ensure safer operation and prevent reerse power flow
[34].

PDG
min ≤ PDG

T ≤ PDG
max (8)

PDG
min ≤ 0.1

(
TAPL+

n∑
i=2

P (i)

)
(9)

PDG
max ≤ 0.8

(
TAPL+

n∑
i=2

P (i)

)
(10)

5) Power Flow: Overview

Power flow (PF) is important for assessing line flows,
node voltages, and power losses in RDPN. Also, it is
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Fig. 2: Flowchart of BFS algorithm.

necessary to compute the fitness values of the objective
functions (TAPL and TVD). The orthodox PF tech-
niques applied in transmission power networks are un-
suitable for RDPN because of their poor convergence
and inaccuracy. Therefore, for an accurate PF solu-
tion in RDPN, researchers typically adopt a backward-
forward sweep (BFS) algorithm [39]. The BFS algo-
rithm implements a two-step simple process known as
a backward sweep (BS) and forward sweep (FS). In BS,
branch currents are determined, whereas node voltages
are computed in FS. During BS execution, the bus volt-
ages are presumed to be the known values. During the
FS execution, voltage is calculated, and it starts from
the upstream node and moves toward the downstream
node [39]. The flowchart illustration for the BFS algo-
rithm is shown in Fig. 2.

3. LSF-JSA Integrated
Technique: Modelling and
Implementation

The proposed integrated optimization technique em-
ploys LSF to optimize the DG’s locations and JSA to
optimize the ratings. This section details the adop-
tion of the proposed integrated approach for the DG
placement and sizing problem.

3.1. Optimal Bus Selection using
LSF

LSF reflects the impact of AP flow on the power losses.
Hence, the present study makes use of LSF informa-

Fig. 3: Optimal DG placement selection.

tion to identify the optimal bus location for DG place-
ment [37]. Also, optimal bus selection via LSF index
computation significantly cut down the search space of
the optimization algorithm. The mathematical equa-
tion for the LSF index is given in Eq. (11). The buses
with a high LSF index and minimum normalized volt-
age (VN) are selected as the ideal sites for DG place-
ment. The bus voltages are normalized to a minimum
constraint voltage (Vmin). The flowchart for optimal
bus selection is illustrated in Fig. 3.

LSFi =
2QiRk

|Vi|2
(11)

3.2. Optimal Sizing using JSA

JSA is a novel metaheuristic algorithm introduced to
solve numerous optimization problems. JSA addresses
complex optimization problems effectively through its
diverse search ability, an adaptive search approach,
and a balanced exploration-exploitation process. These
unique features greatly evade local optima entrapment
and fast convergence. Noticeably, the JSA has reported
superior performance to several benchmark functions
[40]. JSA mimics the food search behaviors of jellyfish.
Jellyfish adopt two types of search mechanisms, viz.,
diversification and intensification, to capture nutrition
like fish eggs, larvae, etc., in the ocean current and
jellyfish swarm. JSA switches between search mecha-
nisms via a time control mechanism (TCM). The math-
ematical background of JSA implementation is pre-
sented as follows.
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1) Population Initialization

A unique tactic known as a chaotic map is adopted for
initializing the population. Equation (12) expresses the
population initialization.

Yi+1 = ηYi (1− Yi) , 0 ≤ Yi ≤ 1 (12)

and

Y0 ∈ (0, 1) , Y0 /∈ {0, 0.25, 0.75, 0.5, 1.0} (13)

where ‘Y ’ refers to the logistic chaotic value of jellyfish
and ‘η’ is a constant.

2) Ocean Current (OC) Search Movement

The OC has rich quantities of nutrients. Hence, Jelly-
fish follows the OC in search of nutrition. The direction
of OC, (

−−−→
trend) is discovered using Eq. (14).

−−−→
trend = Y ∗ − β × rand (0, 1)× µ (14)

where ‘Y ∗’ points the best (current) jellyfish position;
‘β’ and ‘µ’ refer to distribution coefficient and mean
position of all jellyfish, respectively. The jellyfish up-
grades its location via Eq. (15) and Eq. (16).

Yi(t+ 1) = Yi(t) + rand(0, 1)×
−−−→
trend (15)

Yi(t+ 1) =Yi(t) + rand(0, 1)× Y ∗

− β × rand(0, 1)× µ
(16)

3) Jellyfish Search Movement

Jellyfish swarm moves in two different motions, viz. ac-
tive and passive. JSA characterizes the jellyfish’s pas-
sive motion as type ‘A’ and active motion as type ‘B,’
respectively. In the beginning of the optimization pro-
cess, jellyfish swarms tend to follow type ‘A’ motion.
But, later it follows type ‘B’ motion. Type ‘A’ motion
epitomizes the jellyfish movement inside the swarm.
Equation (17) gives the jellyfish movement following a
type ‘A’ motion.

Yi(t+ 1) = Yi(t) + γ × rand(0, 1)× [Hb − Lb] (17)

where ‘Lb’ and ‘Hb’ correspond to the lower and upper
limit of the search area, respectively; ‘γ’ refer motion
coefficient.

In type ‘B’ motion, the jellyfish movement direction
is explored via considering a jellyfish, ‘j,’ alongside the
one chosen (jellyfish, ‘i’) in a random process. If the
nutrition around the jellyfish, ‘j,’ is more compared to
the location of jellyfish, ‘i,’ then jellyfish, ‘i,’ directs
towards jellyfish, ‘j.’ Otherwise, jellyfish, ‘i’ directs
away from jellyfish, ‘j.’ Similarly, remaining jellyfish

inside the swarm move and occupy the best position
to consume the food. The mathematical illustration
for the jellyfish movement and its updated position is
given in Eq. (18)-(20).

−−→
Step = rand(0, 1)×

−−−−−−−→
Direction (18)

−−−−−−−→
Direction =

{
Yj(t)− Yi(t) if f(Yi) ≥ f(Yj)
Yi(t)− Yj(t) if f(Yi) < f(Yj)

(19)
Yi(t+ 1) = Yj(t) +

−−→
Step (20)

where f (Y) refers to a fitness function.

4) Time Control Mechanism (TCM)

The OC embraces a bulk quantity of nutrition for jelly-
fish. Therefore, the jellyfish creates a swarm to search
for food in the OC. The OC changes its direction for
a temperature or wind direction change. Under this
circumstance, the jellyfish crafts another swarm and
directs its movement towards the OC. However, to reg-
ulate the movement of jellyfish inside and outside the
swarm, a TCM is added in the JSA. TCM introduces a
time control function (TCF) and constant c0 to regu-
late the movement of jellyfish. Equation (21) expresses
TCF used in JSA. ‘c0’ is an unknown value that varies
from 0 to 1.

c(t) = TCF =

∣∣∣∣(1− t

Itermax

)
× (2× rand(0, 1)− 1)

∣∣∣∣
(21)

where ‘t’ and ‘Itermax’ correspond to iteration time
and a maximum number of iterations, respectively.
(1 − c(t)) signifies the movement of jellyfish inside a
swarm.

The jellyfish movement is characterized as a type ‘A’
motion, if rand (0, 1) is more than (1−c(t)); otherwise
jellyfish follow type ‘B’ motion.

5) Boundary Conditions

The jellyfish circulates randomly inside an ocean.
Hence, its position must be regularized within a spec-
ified boundary condition whenever it goes beyond the
search area to have a better solution. Equation (22)
illustrates the boundary condition normalization.

Y ′
i,d =

{
(Yi,d −Hb,d) + Lb,d if Yi,d > Hb,d

(Yi,d − Lb,d) +Hb,d if Yi,d < Lb,d

(22)

where ‘Yi,d’ and ‘Y ′
i,d’ denote jellyfish’s actual position

and updated position, respectively. The concept of
JSA algorithm is presented graphically as flowchart in
Fig. 4.

The step-by-step implementation of LSF-JSA inte-
grated approach is presented below.
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Fig. 4: JSA flowchart.

Step 1) Provide the necessary data for 69-bus IEEE
benchmark RDPN.

Step 2) Run the power flow and find TAPL and
TVD for the benchmark test system (without DG
placement).

Step 3) Execute the following steps to locate opti-
mal buses.

a) Compute LSF index for all buses of a benchmark
test system.

b) Sort the buses in descending order based on the
LSF index.

c) Calculate VN for all buses.

d) Locate the buses with VN less than 1.01 and con-
sider them as potentially weaker buses for DG
placement.

e) Select the buses with a high LSF index and mini-
mum ‘VN’ as the optimal buses for compensation
device placement.

Step 4) Execute the JSA to optimize rating(s) of
DGs.

a) Get the optimal buses for DG placement.

b) Set the population size, number of iterations, and
initialize relevant constraints.

c) Find the initial candidate solutions using Eq. (12),
and map the solution with jellyfish location.

d) Run the BFS algorithm or PF method to compute
the fitness value for every candidate solution.

e) Set the iteration count to 1.

f) Update the location of jellyfish using Eq. (15)-
(16).
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g) Run the PF and determine the fitness value for
the updated jellyfish location.

h) Compare the fitness values of present and previous
locations of jellyfish. Assign the jellyfish solution
that gives the minimum fitness value as the elite
solution.

i) Check for constraint violation and iteration num-
ber.

j) If the iteration count is less than the maximum
value, increase the iteration by 1 and go to Step 4d.

Step 5) Print the elite solution.

4. Simulation Results and
Discussion

The efficacy of the proposed integrated approach was
tested on the IEEE benchmark 69-bus RDPN. Further,
the performance of the proposed LSF-JSA integrated
approach was investigated for different cases: i) single
DG and three DG placements. The simulation findings
were obtained using MATLAB 2022b software. The
proposed optimization approach was simulated for 50
independent times to explore the best (global) optimal
solution. The simulation studies were conducted for
30 numbers of population and 100 iterations (max.).
Also, the natural uncertainties associated with solar
and wind energy was ignored in this work.

The integrated LSF-JSA solves the multi-objective
function using a WSM; hence appropriate selection of
weightage factors (δ1 and δ2) is critical for computation
of optimal solutions. The weighted factors are chosen
based on the significance of objective functions. The
present study gives more priority to TAPL minimiza-
tion than TVD minimization. Therefore, δ1 should
be chosen greater than δ2. The appropriate value for
weightage factors is selected based on the fitness value
of the objective function. The combination of δ1 and δ2
for which the fitness value results least is considered to
be the appropriate value. In the present study, δ1 and
δ2 are approximated as 0.6 and 0.4, respectively, since
this combination results in the least fitness value for a
single DG allocation (PV) in a 69-bus radial RDPN.

4.1. IEEE 69-bus RDPN

Figure 5 presents the single-line diagram (SLD) for the
IEEE 69-bus benchmark system [41]. The test system
is connected with 3800 kW of real power and 2690 kVAr
of reactive power. The substation operates at 12.66
kV. The PF execution on the test system without DG
placement results in 225 kW of TAPL and 1.8369 p.u

Fig. 5: SLD of IEEE 69-bus RPDN.

Fig. 6: LSF and VN of IEEE 69-bus RDPN.

of TVD. The test system experiences a Vmin of 0.9092
p.u. in the 65th bus (far end). It is also found that 9
out of 65 buses have voltage magnitudes less than 0.95
p.u.

4.2. Identification of Optimal Bus

The appropriate buses for DG placement are optimized
based on the LSF index. Figure 6 illustrates the LSF
index for the 69-bus RDPN. First, the sequences of
buses for optimal DG placement are obtained based on
the LSF index and VN. Then, the buses are listed in
descending order based on the LSF index to find the
candidate bus sequences for DG placement. The can-
didate bus sequences for the 69 bus benchmark system
are 57, 58, 61, 60, 59, 64, 17, 65, 16, 21, 19, 63, 20,
62, 25, 24, 23, 26, 27, 18, and 22. For a single DG
placement, bus 57 is picked as an optimal location, and
likewise, buses 17, 61, and 65 are picked as optimal lo-
cations for multiple (three) DG placements.

4.3. Optimal Solution

This subsection discusses the optimal solution obtained
for different cases of DG placement. Table 1 present the
simulation findings for single and three DG placements.
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Fig. 7: VD of IEEE 69 bus- RDPN with and without optimized
single PV and WT system.

Fig. 8: VP of IEEE 69-bus RDPN with and without optimized
single PV and WT system.

1) Case-1: Single DG System Placement

In case-1 investigation, a single DG system is optimally
integrated into the RDPN. The simulation findings for
the case-1 DG allocation are presented in Table 1 and
Figures 7, 8, and 9. Figures 7 and 8 illustrate VD
and VP of the IEEE 69-bus RDPN without and with
a single PV and WT system, respectively. Figure 9
gives the convergence characteristic of JSA for a 69-
bus RDPN with optimized single DG placement.

The placement of PV system at the 57th bus of a test
system with a 1785.58 kW rating minimized the TAPL
from 225 kW to 77.10 kW and reduced the TVD from
1.8369 p.u. to 0.7036 p.u. Furthermore, the TVD re-
duction has enhanced the VP significantly. Noticeably,
optimized PV system placement enhanced the Vmin
from 0.9092 p.u. (without DG) to 0.9781 p.u. Simi-
larly, optimized positioning of a single WT system at
the 57th bus with 1885.56 kVA reduced the TAPL to
19.52 kW and TVD to 0.0.3934 p.u. The least bus volt-

Fig. 9: Convergence characteristics of JSA for optimized place-
ment of single and multiple DGs in IEEE 69-bus RPDN.

age magnitude of the test system is increased to 0.9856
p.u., after the optimized inclusion of the WT system.
The JSA has taken 24 and 31 iterations and 57 and 65
seconds of CPU time for optimal solution convergence
for single PV and WT system allocation, respectively.

The proposed optimization approach is executed for
50 runs in MATLAB software. The best, maximum,
mean, and standard deviation values obtained for the
multi-objective function are outlined in Table 2.

2) Case 2: Three DGs Placement

Table 3 presents the MATLAB simulation findings for
three units of DG allocations. The VD and VP of
the test network after the three DG optimizations are
presented in Figures 10, and 11, respectively. The pro-
posed integrated approach finds the optimal solution
by optimizing the PV systems for 1567 kW, 727 kW
and 596.9 kW capacities at 61st, 17st and 65st buses, re-
spectively; and WT systems for 1007.1 kVA, 884.7 kVA,
and 997.7 kVA ratings at 61st, 17st and 65st buses, cor-
respondingly. The JSA converges in 29 iterations and
63 seconds for a multi-PV systems allocation and 33 it-
erations and 68 seconds for optimal multi-WT systems
integration. TAPL is reduced to 62.32 kW and 9.94 kW
after the optimized inclusion of multi-PV and WT sys-
tems, respectively. Simultaneously, TVD is minimized
to 0.6698 p.u and 0.3466 p.u immediately after the op-
timized three PV and WT systems allocation, respec-
tively. Moreover, the Vmin is enhanced to 0.9798p.u
and 0.98993p.u after the PV and WT systems opti-
mization, respectively.

3) Comparative Analysis

The effectiveness of the LSF-JSA integrated approach
is examined by relating its simulation findings with sev-
eral optimization methodologies reported in the litera-
ture. Tables 3 and 4 present the simulation findings of
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Tab. 1: Simulation results of IEEE 69-bus RDPN for different cases of DG placement.

DG
Capacity

in
kW/kVA

(bus)

TAPL
in kW

%
TAPL
Reduc-

tion

TVD
in p.u

Vmin in
p.u

No. of
Itera-
tions

CPU
Time
(s)

No DG - 225 - 1.8369 0.9092 - -

With PV Placement

Single PV 1785.58 (57) 77.10 65.73 0.7036 0.9781 24 57

Three PVs
1567 (61)
727 (17)

596.9 (65)

62.32 72.30 0.6698 0.9798 29 63

With WT Placement

Single WT 1885.56 (57) 19.52 91.32 0.3934 0.9856 31 65

Three WTs
1007.1 (61)
884.7 (17)
997.7 (65)

9.94 95.58 0.3466 0.9899 33 68

Tab. 2: Optimal solution for different cases of DG placement.

Stats One PV One
WT

Three
PVs

Three
WTs

Best 0.4870 0.2094 0.4341 0.1651
Maximum 0.5261 0.2457 0.4702 0.2116

Mean 0.4956 0.2188 0.4519 0.1802
Standard
deviation 0.0131 0.0123 0.0128 0.0130

Tab. 3: Simulation results comparison: one DG placement.

Methodology DG Capacity in
kW/kVA (@bus) TAPL in kW % TAPL

Reduction

PV System Placement

ALOA [23] 1800 (61) 81.77 63.64

ROA [27] 1872.7 (61) 83.19 63.01

GA [10] 1872 (61) 83.18 63.02

PSO [11] 1337.8 (61) 83.20 63.01

SOA [3] 1890 (61) 81.50 63.76

Proposed 1785.58 (57) 77.10 65.73

WT System Placement

ALOA [23]] 2227.9 (61) 23.16 89.70

ROA [27] 1828.47 (61) 23.16 89.70

SOA [3] 2250 (61) 23.15 89.70

Proposed 1885.56 (57) 19.52 91.32
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Fig. 10: VD of IEEE 69-bus RDPN with and without optimized
three PV and WT systems.

Fig. 11: VP of IEEE 69-bus RDPN with and without optimized
three PV and WT systems.

the proposed LSF-JSA approach and other popular op-
timization approaches for a single and three DG place-
ments in the IEEE 69-bus benchmark RPDN. The com-
parison has been performed taking percentage TAPL
reduction as a comparison parameter. The compar-
ison witnessed that the proposed LSF-JSA approach
yields a maximum percentage of TAPL reduction with
65.73% and 91.32% for a single PV and WT system
allocation, respectively. Also, the PSO [11] approach
yields the least percentage of PL reduction at 63.01%
amongst the other methodologies for a single PV sys-
tem allocation. At the same time, the proposed inte-
grated approach reduced 72.30% and 95.58% of TAPL
following the multi-PV and WT systems allocation,
respectively, which are the maximum amongst the re-
ported methodologies in Table 4. Furthermore, GA [11]
and IMOHS [42] approaches have reported minimum
PL reduction in the literature for optimized three units
of PV and WT DG placements, respectively.

5. Conclusion

In this work, an efficient LSF-JSA integrated optimiza-
tion technique has been applied for optimizing single

and multiple DG systems. The best placement and rat-
ings for DG systems were optimized for TAPL reduc-
tion and TVD minimization. Optimal placements for
the DG systems were identified via the LSF index, and
the ratings were optimized via the application of JSA.
The performance of an LSF-JSA integrated technique
was assessed on the 69-bus IEEE benchmark RDPN
for single and three units of PV and WT system place-
ments. TAPL of the benchmark RPDN was reduced by
65.73% and 72.30% after the allocation of single and
three PV systems, respectively. Furthermore, the PL
was further reduced by 91.32% and 95.58% after the
optimized inclusion of one and three units of WT sys-
tems, respectively. The optimized inclusion of DGs also
reduced the TVD of RDPN significantly and enhanced
the VP above the recommended Vmin. Besides, to eval-
uate the effectiveness of the simulation findings of the
integrated technique, the test results were compared
to the simulation findings of several optimization tech-
niques published in the literature. The integrated ap-
proach overcomes the limitations of existing optimiza-
tion techniques and produces superior outcomes with
better convergence characteristics. The proposed inte-
grated approach showed its ability to discover the best
locations and ratings for DG allocations, and hence it
can be recommended for implementation in the prac-
tical RDPN in the future.
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